Copied to
clipboard

G = C23.15S4order 192 = 26·3

2nd non-split extension by C23 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C23.15S4, Q8⋊Dic36C2, (C2×Q8)⋊2Dic3, (C2×Q8).14D6, C22.18(C2×S4), Q8.1(C2×Dic3), (C22×Q8).4S3, C22.5(A4⋊C4), (C2×SL2(𝔽3))⋊3C4, C2.3(Q8.D6), SL2(𝔽3).5(C2×C4), (C22×SL2(𝔽3)).4C2, (C2×SL2(𝔽3)).14C22, C2.6(C2×A4⋊C4), SmallGroup(192,979)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C23.15S4
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3)Q8⋊Dic3 — C23.15S4
SL2(𝔽3) — C23.15S4
C1C22C23

Generators and relations for C23.15S4
 G = < a,b,c,d,e,f,g | a2=b2=c2=f3=1, d2=e2=c, g2=b, ab=ba, gag-1=ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, bg=gb, ede-1=cd=dc, geg-1=ce=ec, cf=fc, cg=gc, fdf-1=cde, gdg-1=de, fef-1=d, gfg-1=f-1 >

Subgroups: 283 in 81 conjugacy classes, 21 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C8, C2×C4, Q8, Q8, C23, Dic3, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×Q8, C2×Q8, C2×Q8, SL2(𝔽3), C2×Dic3, C22×C6, Q8⋊C4, C42⋊C2, C2×M4(2), C22×Q8, C6.D4, C2×SL2(𝔽3), C2×SL2(𝔽3), C23.38D4, Q8⋊Dic3, C22×SL2(𝔽3), C23.15S4
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C2×Dic3, S4, A4⋊C4, C2×S4, Q8.D6, C2×A4⋊C4, C23.15S4

Character table of C23.15S4

 class 12A2B2C2D2E34A4B4C4D4E4F4G4H6A6B6C6D6E6F6G8A8B8C8D
 size 1111228666612121212888888812121212
ρ111111111111111111111111111    trivial
ρ21111-1-111-11-1-111-1-1-1-1-11111-11-1    linear of order 2
ρ311111111111-1-1-1-11111111-1-1-1-1    linear of order 2
ρ41111-1-111-11-11-1-11-1-1-1-1111-11-11    linear of order 2
ρ511-1-1-11111-1-1-ii-ii1-1-11-11-1ii-i-i    linear of order 4
ρ611-1-11-111-1-11ii-i-i-111-1-11-1i-i-ii    linear of order 4
ρ711-1-1-11111-1-1i-ii-i1-1-11-11-1-i-iii    linear of order 4
ρ811-1-11-111-1-11-i-iii-111-1-11-1-iii-i    linear of order 4
ρ9222222-122220000-1-1-1-1-1-1-10000    orthogonal lifted from S3
ρ102222-2-2-12-22-200001111-1-1-10000    orthogonal lifted from D6
ρ1122-2-2-22-122-2-20000-111-11-110000    symplectic lifted from Dic3, Schur index 2
ρ1222-2-22-2-12-2-2200001-1-111-110000    symplectic lifted from Dic3, Schur index 2
ρ133333330-1-1-1-111110000000-1-1-1-1    orthogonal lifted from S4
ρ143333-3-30-11-111-1-1100000001-11-1    orthogonal lifted from C2×S4
ρ153333330-1-1-1-1-1-1-1-100000001111    orthogonal lifted from S4
ρ163333-3-30-11-11-111-10000000-11-11    orthogonal lifted from C2×S4
ρ1733-3-3-330-1-111-ii-ii0000000-i-iii    complex lifted from A4⋊C4
ρ1833-3-33-30-111-1-i-iii0000000i-i-ii    complex lifted from A4⋊C4
ρ1933-3-3-330-1-111i-ii-i0000000ii-i-i    complex lifted from A4⋊C4
ρ2033-3-33-30-111-1ii-i-i0000000-iii-i    complex lifted from A4⋊C4
ρ214-4-4400-2000000000000-2220000    symplectic lifted from Q8.D6, Schur index 2
ρ224-44-400-200000000000022-20000    symplectic lifted from Q8.D6, Schur index 2
ρ234-4-4400100000000-3-3--3--31-1-10000    complex lifted from Q8.D6
ρ244-44-400100000000--3-3--3-3-1-110000    complex lifted from Q8.D6
ρ254-44-400100000000-3--3-3--3-1-110000    complex lifted from Q8.D6
ρ264-4-4400100000000--3--3-3-31-1-10000    complex lifted from Q8.D6

Smallest permutation representation of C23.15S4
On 32 points
Generators in S32
(1 16)(2 13)(3 14)(4 15)(5 25)(6 26)(7 27)(8 28)(9 17)(10 18)(11 19)(12 20)(21 31)(22 32)(23 29)(24 30)
(1 16)(2 13)(3 14)(4 15)(5 27)(6 28)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10 3 12)(2 9 4 11)(5 30 7 32)(6 29 8 31)(13 17 15 19)(14 20 16 18)(21 26 23 28)(22 25 24 27)
(2 10 11)(4 12 9)(5 30 8)(6 7 32)(13 18 19)(15 20 17)(22 26 27)(24 28 25)
(1 31 16 23)(2 5 13 27)(3 29 14 21)(4 7 15 25)(6 20 28 12)(8 18 26 10)(9 32 17 24)(11 30 19 22)

G:=sub<Sym(32)| (1,16)(2,13)(3,14)(4,15)(5,25)(6,26)(7,27)(8,28)(9,17)(10,18)(11,19)(12,20)(21,31)(22,32)(23,29)(24,30), (1,16)(2,13)(3,14)(4,15)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,30,7,32)(6,29,8,31)(13,17,15,19)(14,20,16,18)(21,26,23,28)(22,25,24,27), (2,10,11)(4,12,9)(5,30,8)(6,7,32)(13,18,19)(15,20,17)(22,26,27)(24,28,25), (1,31,16,23)(2,5,13,27)(3,29,14,21)(4,7,15,25)(6,20,28,12)(8,18,26,10)(9,32,17,24)(11,30,19,22)>;

G:=Group( (1,16)(2,13)(3,14)(4,15)(5,25)(6,26)(7,27)(8,28)(9,17)(10,18)(11,19)(12,20)(21,31)(22,32)(23,29)(24,30), (1,16)(2,13)(3,14)(4,15)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,30,7,32)(6,29,8,31)(13,17,15,19)(14,20,16,18)(21,26,23,28)(22,25,24,27), (2,10,11)(4,12,9)(5,30,8)(6,7,32)(13,18,19)(15,20,17)(22,26,27)(24,28,25), (1,31,16,23)(2,5,13,27)(3,29,14,21)(4,7,15,25)(6,20,28,12)(8,18,26,10)(9,32,17,24)(11,30,19,22) );

G=PermutationGroup([[(1,16),(2,13),(3,14),(4,15),(5,25),(6,26),(7,27),(8,28),(9,17),(10,18),(11,19),(12,20),(21,31),(22,32),(23,29),(24,30)], [(1,16),(2,13),(3,14),(4,15),(5,27),(6,28),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10,3,12),(2,9,4,11),(5,30,7,32),(6,29,8,31),(13,17,15,19),(14,20,16,18),(21,26,23,28),(22,25,24,27)], [(2,10,11),(4,12,9),(5,30,8),(6,7,32),(13,18,19),(15,20,17),(22,26,27),(24,28,25)], [(1,31,16,23),(2,5,13,27),(3,29,14,21),(4,7,15,25),(6,20,28,12),(8,18,26,10),(9,32,17,24),(11,30,19,22)]])

Matrix representation of C23.15S4 in GL7(𝔽73)

1000000
0100000
0010000
00072000
00007200
00072010
00086401
,
72000000
07200000
00720000
00072000
00007200
00000720
00000072
,
1000000
0100000
0010000
00072000
00007200
00000720
00000072
,
0010000
7272720000
1000000
00065900
0009800
0000001
00000720
,
7272720000
0010000
0100000
000646500
00065900
000233398
0003340864
,
1000000
7272720000
0100000
0001000
0009800
0000010
0003340864
,
27000000
00270000
02700000
00010710
000659071
00010720
0003341864

G:=sub<GL(7,GF(73))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,72,8,0,0,0,0,72,0,64,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72],[0,72,1,0,0,0,0,0,72,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,65,9,0,0,0,0,0,9,8,0,0,0,0,0,0,0,0,72,0,0,0,0,0,1,0],[72,0,0,0,0,0,0,72,0,1,0,0,0,0,72,1,0,0,0,0,0,0,0,0,64,65,23,33,0,0,0,65,9,33,40,0,0,0,0,0,9,8,0,0,0,0,0,8,64],[1,72,0,0,0,0,0,0,72,1,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,9,0,33,0,0,0,0,8,0,40,0,0,0,0,0,1,8,0,0,0,0,0,0,64],[27,0,0,0,0,0,0,0,0,27,0,0,0,0,0,27,0,0,0,0,0,0,0,0,1,65,1,33,0,0,0,0,9,0,41,0,0,0,71,0,72,8,0,0,0,0,71,0,64] >;

C23.15S4 in GAP, Magma, Sage, TeX

C_2^3._{15}S_4
% in TeX

G:=Group("C2^3.15S4");
// GroupNames label

G:=SmallGroup(192,979);
// by ID

G=gap.SmallGroup(192,979);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,28,1373,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^3=1,d^2=e^2=c,g^2=b,a*b=b*a,g*a*g^-1=a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,e*d*e^-1=c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=c*d*e,g*d*g^-1=d*e,f*e*f^-1=d,g*f*g^-1=f^-1>;
// generators/relations

Export

Character table of C23.15S4 in TeX

׿
×
𝔽